题目内容
已知函数f(x)=ex(其中e是自然数的底数),g(x)=x2+ax+1,a∈R.
(1)记函数F(x)=f(x)•g(x),且a>0,求F(x)的单调增区间;
(2)若对任意x1,x2∈[0,2],x1≠x2,均有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求实数a的取值范围.
(1)记函数F(x)=f(x)•g(x),且a>0,求F(x)的单调增区间;
(2)若对任意x1,x2∈[0,2],x1≠x2,均有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求实数a的取值范围.
考点:利用导数研究函数的单调性,利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:(1)求出函数的导数,即可求函数f(x)的单调区间;
(2)设x1<x2,因为g(x)=ex在[0,2]单调递增,故原不等式等价于|f(x1)-f(x2)|<g(x2)-g(x1)在x1、x2∈[0,2],且x1<x2恒成立,当a≥-(ex+2x)恒成立时,a≥-1;当a≤ex-2x恒成立时,a≤2-2ln2,综合讨论结果,可得实数a的取值范围.
(2)设x1<x2,因为g(x)=ex在[0,2]单调递增,故原不等式等价于|f(x1)-f(x2)|<g(x2)-g(x1)在x1、x2∈[0,2],且x1<x2恒成立,当a≥-(ex+2x)恒成立时,a≥-1;当a≤ex-2x恒成立时,a≤2-2ln2,综合讨论结果,可得实数a的取值范围.
解答:
解:(1)y=f(x)•g(x)=(x2+ax+1)•ex,
∴F'(x)=[x2+(a+2)x+(a+1)]ex,
令F'(x)=0,则x2+(a+2)x+(a+1)=0,即[x+(a+1)](x+1)=0,解得x=-1,或x=-a-1
∵a>0,∴-a-1<-1,
∵x∈[-a-1,-1]时,y'<0,x∈(-∞,-a-1)和(-1,+∞)时,y'>0,
∴函数F(x)的单调增区间为(-∞,-a-1)和(-1,+∞),
(2)设x1<x2,因为f(x)=ex在[0,2]单调递增,
故原不等式等价于|f(x1)-f(x2)|<g(x2)-g(x1)在x1、x2∈[0,2],且x1<x2恒成立,
所以g(x1)-g(x2)<f(x1)-f(x2)<g(x2)-g(x1)在x1、x2∈[0,2],且x1<x2恒成立,
即
,在x1、x2∈[0,2],且x1<x2恒成立,
则函数F(x)=g(x)-f(x)和G(x)=f(x)+g(x)都在[0,2]单调递增,
则有
,在[0,2]恒成立,
当a≥-(ex+2x)恒成立时,因为-(ex+2x)在[0,2]单调递减,
所以-(ex+2x)的最大值为-1,所以a≥-1;
当a≤ex-2x恒成立时,因为ex-2x在[0,ln2]单调递减,在[ln2,2]单调递增,
所以ex-2x的最小值为2-ln2,所以a≤2-2ln2,
综上:-1≤a≤2-2ln2.
∴F'(x)=[x2+(a+2)x+(a+1)]ex,
令F'(x)=0,则x2+(a+2)x+(a+1)=0,即[x+(a+1)](x+1)=0,解得x=-1,或x=-a-1
∵a>0,∴-a-1<-1,
∵x∈[-a-1,-1]时,y'<0,x∈(-∞,-a-1)和(-1,+∞)时,y'>0,
∴函数F(x)的单调增区间为(-∞,-a-1)和(-1,+∞),
(2)设x1<x2,因为f(x)=ex在[0,2]单调递增,
故原不等式等价于|f(x1)-f(x2)|<g(x2)-g(x1)在x1、x2∈[0,2],且x1<x2恒成立,
所以g(x1)-g(x2)<f(x1)-f(x2)<g(x2)-g(x1)在x1、x2∈[0,2],且x1<x2恒成立,
即
|
则函数F(x)=g(x)-f(x)和G(x)=f(x)+g(x)都在[0,2]单调递增,
则有
|
当a≥-(ex+2x)恒成立时,因为-(ex+2x)在[0,2]单调递减,
所以-(ex+2x)的最大值为-1,所以a≥-1;
当a≤ex-2x恒成立时,因为ex-2x在[0,ln2]单调递减,在[ln2,2]单调递增,
所以ex-2x的最小值为2-ln2,所以a≤2-2ln2,
综上:-1≤a≤2-2ln2.
点评:本题考查的知识点是导数在最大值和最小值中的应用,利用导数分析函数的单调性,利用导数分析函数的极值,运算量大,综合性强,转化困难,属于难题.
练习册系列答案
相关题目
a、b为实数且b-a=2,若多项式函数f (x)在区间(a,b)上的导数f′(x)满足f′(x)<0,则一定成立的关系式是( )
A、f (a)<f (b) | ||
B、f (a+1)>f (b-
| ||
C、f (a+1)>f (b-1) | ||
D、f (a+1)>f (b-
|
设a=0.50.5,b=0.30.5,c=log0.32,则a,b,c的大小关系是( )
A、a>b>c |
B、a<b<c |
C、b<a<c |
D、a<c<b |
从装有大小相同的3个红球和2个白球的口袋内任取1个球,取到白球的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|