题目内容
已知α,β,α+β均为锐角,a=sin(α+β),b=sinα+sinβ,c=cosα+cosβ,则a,b,c的大小关系是
c>b>a
c>b>a
.分析:α,β,α+β均为锐角,可利用特值法,令α=
,β=
即可判断.
π |
6 |
π |
4 |
解答:解:∵α,β,α+β均为锐角,
∴可令α=
,β=
,
则a=sin(
+
)=
×
+
×
=
;
b=sin
+sin
=
+
=
>
=a,
c=cos
+cos
=
+
>
+
=b,
∴c>b>a.
故答案为:c>b>a.
∴可令α=
π |
6 |
π |
4 |
则a=sin(
π |
6 |
π |
4 |
1 |
2 |
| ||
2 |
| ||
2 |
| ||
2 |
| ||||
4 |
b=sin
π |
6 |
π |
4 |
1 |
2 |
| ||
2 |
2+2
| ||
4 |
| ||||
4 |
c=cos
π |
6 |
π |
4 |
| ||
2 |
| ||
2 |
1 |
2 |
| ||
2 |
∴c>b>a.
故答案为:c>b>a.
点评:本题考查不等式比较大小,可用一般法,也可用特值法,属于基础题.
练习册系列答案
相关题目