题目内容

已知a,b,c均为实数,且a=x2-2y+
π
2
,b=y2-2z+
π
4
,c=z2-2x+
π
4

求证:a,b,c中至少有一个大于0.(请用反证法证明)
分析:直接利用反证法设出结论的对立面,证出与题设矛盾的结论即可.
解答:(本小题满分10分)
证明:假设a,b,c都不大于0,即a≤0,b≤0,c≤0,
得a+b+c≤0,
而a+b+c=(x-1)2+(y-1)2+(z-1)2+π-3≥π-3>0,
即a+b+c>0,与a+b+c≤0矛盾,
∴a,b,c中至少有一个大于0.
点评:本题考查反证法证明的方法,注意假设必须是距离的对立面,不可以缺少对立面的结果,并且需要逐一证明.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网