题目内容
已知函数![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431048913.gif)
(1)若
在
处取得极值,求实数
的值;
(2)若
恒成立,求实数
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431048913.gif)
(1)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431064270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431079226.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431110192.gif)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431126480.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431110192.gif)
(Ⅰ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231924311571145.gif)
∵
在
处取
得极值,∴
,解得
(Ⅱ)首先,由定义域知:
对于
恒成立,可得
;
由于:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431344844.gif)
①当
时,在
上,
恒成立,所以,
的单调递减区间为
;
,故此时
不恒成立; ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431500275.gif)
②当
时,在区间
恒成立,所以,
的单调增区间为
,
,故此时恒成立;
③当
时,
∴
在
处取得最小值,只需
恒成立,
设
,
设
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231924318751099.gif)
,
递减;又![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431922472.gif)
所以
即
,解得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431968288.gif)
综上可知,若
恒成立,只需
的取值范围是![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192432031416.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231924311571145.gif)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431064270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431079226.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082319243120472.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431235342.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431266234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431282271.gif)
(Ⅱ)首先,由定义域知:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431298412.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431313250.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431329253.gif)
由于:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431344844.gif)
①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431376244.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431391436.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431407464.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431438287.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431391436.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431469669.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431485495.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431500275.gif)
②当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431516241.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431532639.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431064270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431563415.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431594672.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431610284.gif)
③当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431625290.gif)
![]() | ![]() | ![]() | ![]() |
![]() | - | 0 | + |
![]() | ↘ | 极小值 | ↗ |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231924317501920.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431064270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431781400.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431797783.gif)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231924318122005.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431828474.gif)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431844670.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231924318751099.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431890821.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431906568.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431922472.gif)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431937233.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431953404.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431968288.gif)
综上可知,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431126480.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192431110192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192432031416.gif)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目