题目内容

(本小题满分13分)已知函数(x>0)在x = 1处取得极值–3–c,其中a,b,c为常数。

(1)试确定a,b的值;(6分)

(2)讨论函数f(x)的单调区间;(4分)

(3)若对任意x>0,不等式恒成立,求c的取值范围。(3分)

 

【答案】

(1)

(2)的单调递减区间为,而的单调递增区间为

(3)的取值范围为

【解析】解:(I)由题意知,因此,从而

又对求导得

由题意,因此,解得

(II)由(I)知),令,解得

时,,此时为减函数;

时,,此时为增函数.

因此的单调递减区间为,而的单调递增区间为

(III)由(II)知,处取得极小值,此极小值也是最小值,

要使)恒成立,只需

,从而,解得

所以的取值范围为

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网