题目内容
(本小题满分13分)已知函数(x>0)在x = 1处取得极值–3–c,其中a,b,c为常数。
(1)试确定a,b的值;(6分)
(2)讨论函数f(x)的单调区间;(4分)
(3)若对任意x>0,不等式恒成立,求c的取值范围。(3分)
【答案】
(1);
(2)的单调递减区间为,而的单调递增区间为.
(3)的取值范围为。
【解析】解:(I)由题意知,因此,从而.
又对求导得.
由题意,因此,解得.
(II)由(I)知(),令,解得.
当时,,此时为减函数;
当时,,此时为增函数.
因此的单调递减区间为,而的单调递增区间为.
(III)由(II)知,在处取得极小值,此极小值也是最小值,
要使()恒成立,只需.
即,从而,解得或.
所以的取值范围为.
练习册系列答案
相关题目