题目内容

19.已知各项均为正数的数列{an}的前n项和为Sn,满足$a_{n+1}^2=2{S_n}+n+4,且{a_2}-1,{a_3},{a_7}$恰为等比数列{bn}的前3项.
(1)求数列{an},{bn}的通项公式;
(2)若${c_n}={b_n}+\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{cn}的前n项和Tn

分析 (1)利用等差数列与等比数列的通项公式即可得出;
(2)利用等比数列的前n项和公式、“裂项求和”即可得出.

解答 解:(1)∵${a}_{n+1}^{2}$=2Sn+n+4,
∴当n≥2时,${a}_{n}^{2}$=2Sn-1+n+3,
${a}_{n+1}^{2}-{a}_{n}^{2}$=2an+1,
化为${a}_{n+1}^{2}$=$({a}_{n}+1)^{2}$,
∵各项均为正数,
∴an+1=an+1,即an+1-an=1,
∴数列{an}是等差数列,公差为1.
∴an=a1+n-1.
∵a2-1,a3,a7恰为等比数列{bn}的前3项.
∴${a}_{3}^{2}$=(a2-1)a7
∴$({a}_{1}+2)^{2}$=a1•(a1+6),
化为2a1=4.
解得a1=2.
∴an=n+1,
∴等比数列{bn}的首项为2,公比为2.
∴bn=2n
(2)${c_n}={b_n}+\frac{1}{{{a_n}{a_{n+1}}}}$=2n+$(\frac{1}{n+1}-\frac{1}{n+2})$,
∴数列{cn}的前n项和Tn=$\frac{2({2}^{n}-1)}{2-1}$+$[(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})$+…+$(\frac{1}{n+1}-\frac{1}{n+2})]$
=2n+1-2+$\frac{1}{2}-\frac{1}{n+2}$
=2n+1-$\frac{3}{2}$-$\frac{1}{n+2}$.

点评 本题考查了“错位相减法”、等比数列的通项公式及其前n项和公式、递推关系的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网