题目内容
3.设一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上10,得到一组新数据,则所得新数据的平均数和方差分别是( )A. | 13.6,12.8 | B. | 2.8,13.6 | C. | 12.8,13.6 | D. | 12.8,3.6 |
分析 一组数据的平均数是2.8,方差是3.6,将这组数据中的每一个数据都加上1,得到一组新数据,由数据的平均数和方差的计算公式能求出所得新数据的平均数和方差
解答 解:一组数据的平均数是2.8,方差是3.6,
将这组数据中的每一个数据都加上1,得到一组新数据,
由数据的平均数和方差的计算公式得:
所得新数据的平均数为12.8,方差为3.6.
故选:D.
点评 本题考查了如何求一组数据的平均数与方差,由此题得出的结论是,一组数据的每个数改变同样的大小,其平均数也改变同样的大小,但方差不变.
练习册系列答案
相关题目
13.某地对50人进行运动与性别是否有关测试,其中20名男性中有15名喜欢运动,30名女性中10名喜欢运动.
(Ⅰ)根据以上数据建立一个2×2列联表;
(Ⅱ)判断喜欢运动是否与性别有关?
参考数据:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
临界值表:
(Ⅰ)根据以上数据建立一个2×2列联表;
(Ⅱ)判断喜欢运动是否与性别有关?
参考数据:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
临界值表:
P(Χ2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
14.某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x(℃)与该奶茶店的这种饮料销量y(杯),得到如下数据:
(1)若从这五组数据中随机抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;
(2)请根据所给五组数据,求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$.
(参考公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}},\widehata=\overline y-\widehatb\overline x$.)
日 期 | 1月11日 | 1月12日 | 1月13日 | 1月14日 | 1月15日 |
平均气温x(℃) | 9 | 10 | 12 | 11 | 8 |
销量y(杯) | 23 | 25 | 30 | 26 | 21 |
(2)请根据所给五组数据,求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$.
(参考公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}},\widehata=\overline y-\widehatb\overline x$.)
11.在△ABC中,内角 A,B,C所对的边分别为a,b,c,若${B}=\frac{π}{3}$,且a,b,c成等比数列,则△ABC一定是( )
A. | 不等边三角形 | B. | 钝角三角形 | C. | 等腰直角三角形 | D. | 等边三角形 |
18.计算机执行如图的程序段后,输出的结果是( )
A. | 1,3 | B. | 4,1 | C. | 4,-2 | D. | 1,-2 |
13.平行四边形ABCD的对角线AC与BD相交于O,则( )
A. | $\overrightarrow{AB}$+$\overrightarrow{AD}$=$\overrightarrow{DB}$ | B. | $\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{BC}$ | C. | $\overrightarrow{AB}$+$\overrightarrow{BO}$=$\overrightarrow{OC}$ | D. | $\overrightarrow{AB}$-$\overrightarrow{BC}$=$\overrightarrow{BD}$ |