题目内容

如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点.

(1)求证:MN⊥AB,MN⊥CD;
(2)求MN的长;
(3)求异面直线AN与CM所成角的余弦值.
(1)证明略(2)MN的长为a. (3)异面直线AN与CM所成角的余弦值为
(1)设=p, =q,=r.
由题意可知:|p|=|q|=|r|=a,且p、q、r三向量两两夹角均为60°.
=-=+)-
=(q+r-p),                                                         2分
·=(q+r-p)·p
=(q·p+r·p-p2
=(a2·cos60°+a2·cos60°-a2)=0.
∴MN⊥AB,同理可证MN⊥CD.                                              4分
(2)由(1)可知=(q+r-p)
∴||2=2=(q+r-p)2                                                6分
=[q2+r2+p2+2(q·r-p·q-r·p)]
=[a2+a2+a2+2(--
=×2a2=.
∴||=a,∴MN的长为a.                                            10分
(3) 设向量的夹角为.
=(+)=(q+r),
=-=q-p,
·=(q+r)·(q-p)
=(q2-q·p+r·q-r·p)
=(a2-a2·cos60°+a2·cos60°-a2·cos60°)
=(a2-+-)=.                                            12分
又∵||=||=
·=||·||·cos
=··cos=.
∴cos=,                                                          14分
∴向量的夹角的余弦值为,从而异面直线AN与CM所成角的余弦值为.    
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网