题目内容

已知曲线C:
x=2cosθ
y=sinθ
(θ为参数),若A、B是曲线C上关于坐标轴不对称的任意两点.
(1)求AB的垂直平分线l在x轴上截距的取值范围;
(2)设过点M(1,0)的直线l是曲线C上A,B两点连线的垂直平分线,求l的斜率k的取值范围.
(1)曲线C即:
x2
4
+y2=1,设A(x1,y1),B(x2,y2),AB的中点M(x0,y0),
则有
x12
4
+y12①,
x22
4
+y22=1 ②,由①-②可得
x12-x22
4
+y12-y22=0.
故AB的斜率kAB=
y1-y2
x1-x2
=-
x1+x2
4(y1+y2)
=-
2x0
4•2y0
=-
x0
4y0
.(2分)
l的方程y-y0=
4y0
x0
(x-x0),令y=0,x=
3
4
x0.(4分)
∵-2<x0<2,∴x∈(-
3
2
3
2
),即l在x轴上截距的取值范围为 (-
3
2
3
2
).(6分)
(2)设直线l的方程为y=k(x-1),AB的中点M(x0,y0).由(1)可知kAB=-
x0
4y0
,∴k=
4y0
x0

∵M在直线l上,∴y0=
4y0
x0
(x0-1).∵y0≠0,∴x0=
4
3
.(8分)
∵M(x0,y0)在椭圆内部.∴
x02
4
+y02<1,即
16
9
4
+y02<1.(10分)
故有-
5
3
<y0
5
3
且y0≠0.  再由 k=
4y0
x0
=
4y0
4
3
=3y0
可得-
5
<k<
5
且k≠0,即l的斜率k的取值范围为{k|-
5
<k<
5
且k≠0}.(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网