题目内容

【题目】在△ABC中,角A,B,C所对边分别是a,b,c,若sin(A﹣B)= sinAcosB﹣ sinBcosA.
(1)求证:A=B;
(2)若A= ,a= ,求△ABC的面积.

【答案】
(1)证明:∵sin(A﹣B)= sinAcosB﹣ sinBcosA,

∴sinAcosB﹣cosAsinB= sinAcosB﹣ sinBcosA,

利用正弦定理可得:acosB﹣bcosA= cosB﹣ cosA,

化为:cosA=cosB,又A,B∈(0,π),

∴A=B.


(2)解:∵A=B,∴b=a=

∴c=2bcosA=2 cos

∴SABC= bcsinA= ×2 cos ×sin

=3sin =3sin =3 =


【解析】(1)sin(A﹣B)= sinAcosB﹣ sinBcosA,展开利用正弦定理可得:acosB﹣bcosA= cosB﹣ cosA,化简即可证明.(2)A=B,可得b=a= .c=2bcosA,可得SABC= bcsinA=3sin =3sin ,展开即可得出.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网