题目内容

20.若函数f(x)的定义域为R,f′(x)>2恒成立,f(-1)=2,则f(x)>2x+4解集为(-1,+∞).

分析 构建函数F(x)=f(x)-(2x+4),由f(-1)=2得出F(-1)的值,求出F(x)的导函数,根据f′(x)>2,得到F(x)在R上为增函数,根据函数的增减性即可得到F(x)大于0的解集,进而得到所求不等式的解集.

解答 解:设F(x)=f(x)-(2x+4),
则F(-1)=f(-1)-(-2+4)=2-2=0,
又对任意x∈R,f′(x)>2,所以F′(x)=f′(x)-2>0,
即F(x)在R上单调递增,
则F(x)>0的解集为(-1,+∞),
即f(x)>2x+4的解集为(-1,+∞).
故答案为:(-1,+∞).

点评 本题考查学生灵活运用函数思想求解不等式,解题的关键是构建函数,确定函数的单调性,属于中档题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网