题目内容

方程所表示的曲线为C,有下列命题:
①若曲线C为椭圆,则2<t<4;②若曲线C为双曲线,则t>4或t<2;
③曲线C不可能为圆;④若曲线C表示焦点在y上的双曲线,则t>4;
以上命题正确的是    (填上所有正确命题的序号).
【答案】分析:据椭圆方程的特点列出不等式求出t的范围判断出①错,据双曲线方程的特点列出不等式求出t的范围,判断出②对;据圆方程的特点列出方程求出t的值,判断出③错;据双曲线方程的特点列出不等式求出t的范围,判断出④对.
解答:解:①若C为椭圆应该满足即2<t<4且t≠3,故①错;
②若C为双曲线应该满足(4-t)(t-2)<0即t>4或t<2故②对;
③当4-t=t-2即t=3表示圆,故③错;
④若C表示双曲线,且焦点在y轴上应该满足t-2>0,t-4>0则t>4,故④对
综上知②④正确
故答案为②④.
点评:椭圆方程的形式:焦点在x轴时,焦点在y轴时;双曲线的方程形式:焦点在x轴时;焦点在y轴时
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网