题目内容
椭圆=1的焦点为F1、F2,点P为椭圆上的动点,当∠F1PF2为钝角时,求点P的横坐标x0的取值范围.
解析
在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的右焦点为F(4m,0)(m>0,m为常数),离心率等于0.8,过焦点F、倾斜角为θ的直线l交椭圆C于M、N两点.(1)求椭圆C的标准方程;(2)若θ=90°,,求实数m;(3)试问的值是否与θ的大小无关,并证明你的结论.
已知,直线,为平面上的动点,过点作的垂线,垂足为点,且.(1)求动点的轨迹曲线的方程;(2)设动直线与曲线相切于点,且与直线相交于点,试探究:在坐标平面内是否存在一个定点,使得以为直径的圆恒过此定点?若存在,求出定点的坐标;若不存在,说明理由.
设A、B分别为椭圆=1(a>b>0)的左、右顶点,椭圆长半轴的长等于焦距,且直线x=4是它的右准线.(1)求椭圆的方程;(2)设P为椭圆右准线上不同于点(4,0)的任意一点,若直线BP与椭圆相交于两点B、N,求证:∠NAP为锐角.
已知椭圆=1(a>b>0)的离心率为,且过点P,A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.(1)求椭圆方程;(2)若圆N与x轴相切,求圆N的方程;(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.
已知椭圆=1(a>b>0)的离心率e=,连结椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程;(2)设直线l与椭圆相交于不同的两点A,B.已知点A的坐标为(-a,0).若|AB|=,求直线l的倾斜角.
已知中心在原点的双曲线的右焦点为,实轴长.(1)求双曲线的方程(2)若直线与双曲线恒有两个不同的交点,且为锐角(其中为原点),求的取值范围.
设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴,证明:直线AC经过原点O.
已知常数,向量,经过定点以为方向向量的直线与经过定点以为方向向量的直线相交于,其中,(1)求点的轨迹的方程;(2)若,过的直线交曲线于两点,求的取值范围。