题目内容
已知函数![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616384896.png)
(1)当
时,求
的值域;
(2)当
,
时,函数
的图象关于
对称,求函数
的对称轴。
(3)若
图象上有一个最低点
,如果图象上每点纵坐标不变,横坐标缩短到原来的
倍,然后向左平移1个单位可得
的图象,又知
的所有正根从小到大依次为
,且
,求
的解析式。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616384896.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616400387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616415442.png)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616462337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616478338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616415442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616524573.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616540792.png)
(3)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616415442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616587623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616602413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616618562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616649529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616696644.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616727794.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616758447.png)
(1)当
时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616790714.png)
当
时,值域为:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616836364.png)
当
时,值域为:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616883491.png)
(或将
分三类讨论也行)
(2)当
,
时,
且图象关于
对称。
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210617086540.png)
∴函数
即:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210617133927.png)
∴
由![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210617289903.png)
∴函数的对称轴为:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210617304875.png)
(3)由![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616384896.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210617336959.png)
(其中
,
)
由
图象上有一个最低点
,所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232106174761458.png)
∴
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232106175071070.png)
又图象上每点纵坐标不变,横坐标缩短到原来的
倍,然后向左平移1个单位可得
的图象,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232106175701008.png)
又∵
的所有正根从小到大依次为
,且![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616727794.png)
所以
与直线
的相邻交点间的距离相等,根据三角函数的图象与性质,直线
要么过
的最高点或最低点,要么是![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210618022635.png)
即:
或
(矛盾)或![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210618053617.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210617070223.png)
或![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210618100359.png)
当
时,函数的
直线
和
相交,且
,周期为3(矛盾)
当
时,函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210618194391.png)
直线
和
相交,且
,周期为6(满足)
综上:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210618303943.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616400387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616790714.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616821369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616836364.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616868403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616883491.png)
(或将
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616899283.png)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616462337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616478338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616946803.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616524573.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210617055885.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210617070223.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210617086540.png)
∴函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616540792.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210617133927.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232106172731087.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210617289903.png)
∴函数的对称轴为:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210617304875.png)
(3)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616384896.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210617336959.png)
(其中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210617351846.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210617382858.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616415442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616587623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232106174761458.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232106174921470.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232106175071070.png)
又图象上每点纵坐标不变,横坐标缩短到原来的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616602413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616618562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232106175701008.png)
又∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616649529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616696644.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616727794.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616618562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210617975425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210617975425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616758447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210618022635.png)
即:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210618038468.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210618038449.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210618053617.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210617070223.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210618084365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210618100359.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210618084365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210618162905.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210618194391.png)
直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210617975425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210618162905.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616727794.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210618100359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210618303943.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210618194391.png)
直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210617975425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210618303943.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210616727794.png)
综上:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210618303943.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目