题目内容
【题目】已知.
(1)当时,若函数存在与直线平行的切线,求实数的取值范围;
(2)当时,,若的最小值是,求的最小值.
【答案】(1);(2)的最小值为.
【解析】
(1)求出导函数,则有实数解,由此可得的范围;
(2)考虑到的表达式,题意说明在上恒成立,且“=”可取,这样问题又可转化为即恒成立,且可取.,即的最小值是0.,为求的零点,由得,再由导数求得的最小值是.由于题中要求的最小值,因此研究时的正负,从而得的最小值,可证得此最小值,且为0时只有一解,这样得出结论.
(1)因为,因为函数存在与直线平行的切线,所以
在上有解,即在上有解,所以,得,
故所求实数的取值范围是.
(2)由题意得:对任意恒成立,且可取,即恒成立,且可取.
令,即
,由得,令
.
当时,,
在上,;
在上,.所以.
令在上递减,所以,故方程有唯一解即,
综上,当满足的最小值为,故的最小值为.
练习册系列答案
相关题目
【题目】某同学用“五点法”画函数,在某一周期内的图象时,列表并填入了部分数据,如下表:
0 | |||||
x | |||||
0 | 2 | 0 | 0 |
(1)请将上表数据补充完整,并求函数的解析式;
(2)求函数的单调递增区间;
(3)求函数在区间上的最大值和最小值.