题目内容
如图,过抛物线y2=2px (p>0)的焦点F的直线l交抛物线于点A、B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线方程为( )
A.y2=9x B.y2=6x
C.y2=3x D.y2=x
C
解析
练习册系列答案
相关题目
若双曲线的一条渐近线与圆至多有一个交点,则双曲线离心
率的取值范围是( )
A. | B. | C. | D. |
若双曲线的离心率为,则m=
A. | B.3 | C. | D.2 |
已知点F1、F2分别是双曲线(a>0,b>0)的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2是锐角三角形,则该双曲线离心率的取值范围是( )
A.(1,) | B.(,2) |
C.(1+,+∞) | D.(1,1+) |
过抛物线y2=8x的焦点F作倾斜角为135°的直线交抛物线于A,B两点,则弦AB的长为( )
A.4 | B.8 | C.12 | D.16 |
已知椭圆的焦点为F1、F2,P是椭圆上一个动点,延长F1P到点Q,使|PQ|=|PF2|,则动点Q的轨迹为( )
A.圆 | B.椭圆 | C.双曲线一支 | D.抛物线 |