题目内容
【题目】椭圆,是椭圆的左右顶点,点P是椭圆上的任意一点.
(1)证明:直线,与直线,斜率之积为定值.
(2)设经过且斜率不为0的直线交椭圆于两点,直线与直线交于点,求证:为定值.
【答案】(1)证明见解析; (2)证明见解析.
【解析】
(1)设点,结合直线的斜率公式和椭圆的方程,代入求得直线与直线的斜率之积为定值.
(2)设直线的方程为,联立方程组,得到,进而求得,再联立直线的方程组,求得点的横坐标,结合向量的数量积的公式,即可求解.
(1)由题意,设点,
则直线的斜率为 ,直线的斜率为,
所以,
又由点在椭圆上,可得,即,
所以,
即直线与直线的斜率之积为定值.
(2)由直线过点,所以直线的方程为,
联立方程组,整理得,
设,则,
则,即,
又由直线,直线,
联立方程组,可得,
整理得,
解得,即点
又由向量,
所以(定值),
即为定值.
【题目】某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司2014-2018年的相关数据如下表所示:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年生产台数(万台) | 2 | 4 | 5 | 6 | 8 |
该产品的年利润(百万元) | 30 | 40 | 60 | 50 | 70 |
年返修台数(台) | 19 | 58 | 45 | 71 | 70 |
注:
(1)从该公司2014-2018年的相关数据中任意选取3年的数据,求这3年中至少有2年生产部门考核优秀的概率.
(2)利用上表中五年的数据求出年利润(百万元)关于年生产台数(万台)的回归直线方程是 ①.现该公司计划从2019年开始转型,并决定2019年只生产该产品1万台,且预计2019年可获利32(百万元);但生产部门发现,若用预计的2019年的数据与2014-2018年中考核优秀年份的数据重新建立回归方程,只有当重新估算的,的值(精确到0.01),相对于①中,的值的误差的绝对值都不超过时,2019年该产品返修率才可低于千分之一.若生产部门希望2019年考核优秀,能否同意2019年只生产该产品1万台?请说明理由.
(参考公式:, ,,相对的误差为.)
【题目】天气预报说,在今后的三天中,每一天下雨的概率均为40%,现部门通过设计模拟实验的方法研究三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,其余6个数字表示不下雨:产生了20组随机数:
907 | 966 | 191 | 925 | 271 | 932 | 812 | 458 | 569 | 683 |
431 | 257 | 393 | 027 | 556 | 488 | 730 | 113 | 537 | 989 |
则这三天中恰有两天降雨的概率约为__________.