题目内容
【题目】设数列满足,其中,且为常数.
(1)若是等差数列,且公差,求的值;
(2)若,且数列满足对任意的都成立.
①求数列的前项之和;
②若对任意的都成立,求的最小值.
【答案】(1);(2)①,②.
【解析】分析:(1)设等差数列的公差为,利用等差数列的通项公式,即可化简题设条件,求得的值;
(2)①将代入条件,求得,求得,从而,利用乘公比错位相减,即可求解.
②由恒成立,则对任意都成立,再根据数列的单调性,即可求解.
详解:(1)由题意,可得,
化简得,又,所以.
(2)①将代入条件,可得,解得
所以,则数列是首项为1,公比的等比数列,
所以,从而,
,
两式相减得:;
所以.
②,所以对任意都成立.
由,则,
所以时,;
当时,;
当时,.
所以的最大值为,所以的最小值为.
【题目】“微信运动”是手机推出的多款健康运动软件中的一款,杨老师的微信朋友圈内有位好友参与了“微信运动”,他随机选取了位微信好友(女人,男人),统计其在某一天的走路步数.其中,女性好友的走路步数数据记录如下:
5860 8520 7326 6798 7325 8430 3216 7453 11754 9860
8753 6450 7290 4850 10223 9763 7988 9176 6421 5980
男性好友走路的步数情况可分为五个类别: 步)(说明:“”表示大于等于,小于等于.下同), 步), 步), 步), 步及以),且三种类别人数比例为,将统计结果绘制如图所示的条形图.
若某人一天的走路步数超过步被系统认定为“卫健型",否则被系统认定为“进步型”.
(1)若以杨老师选取的好友当天行走步数的频率分布来估计所有微信好友每日走路步数的概率分布,请估计杨老师的微信好友圈里参与“微信运动”的名好友中,每天走路步数在步的人数;
(2)请根据选取的样本数据完成下面的列联表并据此判断能否有以上的把握认定“认定类型”与“性别”有关?
卫健型 | 进步型 | 总计 | |
男 | 20 | ||
女 | 20 | ||
总计 | 40 |
(3)若从杨老师当天选取的步数大于10000的好友中按男女比例分层选取人进行身体状况调查,然后再从这位好友中选取人进行访谈,求至少有一位女性好友的概率.
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
【题目】某高校在2017年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下:
组号 | 分组 | 频率 |
第1组 | [160,165) | 0.05 |
第2组 | [165,170) | 0.35 |
第3组 | [170,175) | ① |
第4组 | [175,180) | 0.20 |
第5组 | [180,185] | 0.10 |
(1)请先求出频率分布表中①处应填写的数据,并完成如图所示的频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3,4,5组中用分层抽样的方法抽取6名学生进入第二轮面试,求第3,4,5组每组各应抽取多少名学生进入第二轮面试.
(3)根据直方图估计这次自主招生考试笔试成绩的平均数和中位数;