题目内容

【题目】已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c若c﹣a=2acosB,则 的取值范围是

【答案】(
【解析】解:∵c﹣a=2acosB, ∴由正弦定理可得:sinC=2sinAcosB+sinA,
∴sinAcosB+cosAsinB=2sinAcosB+sinA,可得:cosAsinB﹣sinAcosB=sinA,即:sin(B﹣A)=sinA,
∵A,B为锐角,可得:B﹣A=A,可得:B=2A∈(0, ),
∴A∈(0, ),
又∵C=π﹣3A∈(0, ),可得:A∈( ),
∴综上,可得A∈( ),可得:sinA∈( ),
=sinA∈( ).
故答案为:( ).
由正弦定理,三角函数恒等变换的应用化简可得sin(B﹣A)=sinA,由A,B为锐角,可得B=2A,解得A的范围,可得求sinA∈( ),化简所求即可得解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网