题目内容
3.已知数列{an}中an>0,其前n项和为Sn,且对任意的n∈N*,都有Sn=$\frac{1}{4}$(a${\;}_{n}^{2}$+2an+1),等比数列{bn}的通项公式为bn=3n.(1)求数列{an}的通项公式;
(2)求数列{(-1)nan+bn}的前n项和Tn;
(3)设cn=2${\;}^{1+{a}_{n}}$+(-1)nt•bn(t为非零整数,n∈N*),若对任意n∈N*,cn+1>cn恒成立,求t的取值范围.
分析 (1)当n=1时,${a}_{1}=\frac{1}{4}$$({a}_{1}^{2}+2{a}_{1}+1)$,解得a1.当n≥2时,利用递推关系化为(an+an-1)(an-an-1-2)=0,由an>0,可得:an-an-1=2.再利用等差数列的通项公式即可得出.
(2)设数列{(-1)nan},{bn}的前n项和分别为An,Bn.Bn=$\frac{3}{2}({3}^{n}-1)$.
当n=2k(k∈N*)为偶数时,An=-a1+a2-a3+a4+…-a2k-1+a2k=n.可得Tn.当n=2k-1(k∈N*)为奇数时,An=An-1-an.可得Tn.
(3)cn=2${\;}^{1+{a}_{n}}$+(-1)nt•bn=4n+(-1)nt•3n.cn+1>cn即:4n+1+(-1)n+1t•3n+1>4n+(-1)nt•3n.对n分类讨论即可得出.
解答 解:(1)∵对任意的n∈N*,都有Sn=$\frac{1}{4}$(a${\;}_{n}^{2}$+2an+1),
当n=1时,${a}_{1}=\frac{1}{4}$$({a}_{1}^{2}+2{a}_{1}+1)$,解得a1=1.
当n≥2时,Sn-1=$\frac{1}{4}({a}_{n-1}^{2}+2{a}_{n-1}+1)$,∴4an=$({a}_{n}^{2}+2{a}_{n}-{a}_{n-1}^{2}-2{a}_{n-1})$,化为(an+an-1)(an-an-1-2)=0,
∵an>0,∴可得:an-an-1=2.
∴数列{an}是等差数列,首项为1,公差为2.
∴an=1+2(n-1)=2n-1.
(2)设数列{(-1)nan},{bn}的前n项和分别为An,Bn.
Bn=$\frac{3({3}^{n}-1)}{3-1}$=$\frac{3}{2}({3}^{n}-1)$.
当n=2k(k∈N*)为偶数时,An=-a1+a2-a3+a4+…-a2k-1+a2k=(3-1)+(5-3)+…+[2k-(2k-1)]=2k=n.Tn=n+$\frac{3}{2}({3}^{n}-1)$.
当n=2k-1(k∈N*)为奇数时,An=An-1-an=(n-1)-(2n-1)=-n.Tn=-n+$\frac{3}{2}({3}^{n}-1)$.
∴Tn=$\left\{\begin{array}{l}{n+\frac{3}{2}({3}^{n}-1),n为偶数}\\{-n+\frac{3}{2}({3}^{n}-1),n为奇数}\end{array}\right.$.
(3)cn=2${\;}^{1+{a}_{n}}$+(-1)nt•bn=4n+(-1)nt•3n.
cn+1>cn即:4n+1+(-1)n+1t•3n+1>4n+(-1)nt•3n.
当n为偶数时,可得4n+1-t•3n+1>4n+t•3n,化为t<$(\frac{4}{3})^{n-1}$,∴$t<\frac{4}{3}$.
当n为奇数时,可得4n+1+t•3n+1>4n-t•3n,化为$t>-(\frac{4}{3})^{n-1}$,∴t>-1.
综上可得:$-1<t<\frac{4}{3}$,
∵t为非零整数,∴t=1.
点评 本题考查了等比数列的通项公式、指数幂的运算性质、基本不等式的性质,考查了推理能力与计算能力,属于中档题.
A. | (0,$\frac{\sqrt{2}}{2}$] | B. | (1,$\sqrt{2}$) | C. | (0,1) | D. | (0,$\frac{\sqrt{2}}{2}$) |
A. | 若α≠$\frac{π}{6}$,则tanα≠$\frac{\sqrt{3}}{3}$ | B. | 若α=$\frac{π}{6}$,则tanα≠$\frac{\sqrt{3}}{3}$ | ||
C. | 若tanα≠$\frac{\sqrt{3}}{3}$,则α≠$\frac{π}{6}$ | D. | 若tanα≠$\frac{\sqrt{3}}{3}$,则α=$\frac{π}{6}$ |