题目内容
【题目】已知函数f(x)=2 sinxcosx+1﹣2sin2x,x∈R.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的 ,把所得到的图象再向左平移 单位,得到的函数y=g(x)的图象,求函数y=g(x)在区间 上的最小值.
【答案】
(1)解:因为 = ,
故 函数f(x)的最小正周期为T=π. 由 ,k∈Z,
得f(x)的单调递增区间为 ,k∈Z
(2)解:根据条件得μ= ,当x∈ 时, ∈ ,
所以当x= 时,
【解析】(1)化简函数的解析式为 ,函数f(x)的最小正周期为T=π. 由 ,k∈Z,求得f(x)的单调递增区间.(2)根据条件得 ∈ ,所以当x= 时, .
【考点精析】利用正弦函数的单调性和函数y=Asin(ωx+φ)的图象变换对题目进行判断即可得到答案,需要熟知正弦函数的单调性:在上是增函数;在上是减函数;图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
练习册系列答案
相关题目
【题目】甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 | 82 | 81 | 79 | 78 | 95 | 88 | 93 | 84 |
乙 | 92 | 95 | 80 | 75 | 83 | 80 | 90 | 85 |
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.