题目内容

【题目】已知函数f(x)=2 sinxcosx+1﹣2sin2x,x∈R.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的 ,把所得到的图象再向左平移 单位,得到的函数y=g(x)的图象,求函数y=g(x)在区间 上的最小值.

【答案】
(1)解:因为 =

故 函数f(x)的最小正周期为T=π. ,k∈Z,

得f(x)的单调递增区间为 ,k∈Z


(2)解:根据条件得μ= ,当x∈ 时,

所以当x= 时,


【解析】(1)化简函数的解析式为 ,函数f(x)的最小正周期为T=π. ,k∈Z,求得f(x)的单调递增区间.(2)根据条件得 ,所以当x= 时,
【考点精析】利用正弦函数的单调性和函数y=Asin(ωx+φ)的图象变换对题目进行判断即可得到答案,需要熟知正弦函数的单调性:在上是增函数;在上是减函数;图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网