题目内容
若函数f(x)对任意的实数x1,x2∈D,均有|f(x2)-f(x1)|≤|x2-x1|,则称函数f(x)是区间D上的“平缓函数”.
(1)判断g(x)=sin x和h(x)=x2-x是不是实数集R上的“平缓函数”,并说明理由;
(2)若数列{xn}对所有的正整数n都有|xn+1-xn|≤,设yn=sin xn,求证:|yn+1-y1|<.
(1)不是(2)见解析
【解析】g(x)=sin x是R上的“平缓函数”,但h(x)=x2-x不是区间R上的“平缓函数”.设φ(x)=x-sin x,则φ′(x)=1-cos x≥0,则φ(x)=x-sin x是实数集R上的增函数,
不妨设x1<x2,则φ(x1)<φ(x2),即x1-sin x1<x2-sin x2,
则sin x2-sin x1<x2-x1.①
又y=x+sin x也是R上的增函数,则x1+sin x1<x2+sin x2,
即sin x2-sin x1>x1-x2,②
由①②得-(x2-x1)<sin x2-sin x1<x2-x1.
∴|sin x2-sin x1|<|x2-x1|对x1<x2都成立.
当x1>x2时,同理有|sin x2-sin x1|<|x2-x1|成立.
又当x1=x2时,|sin x2-sin x1|=|x2-x1|=0,
∴对任意的实数x1,x2∈R,
均有|sin x2-sin x1|≤|x2-x1|.
∴g(x)=sin x是R上的“平缓函数”.
∵|h(x1)-h(x2)|=|(x1-x2)(x1+x2-1)|,
取x1=3,x2=2,则|h(x1)-h(x2)|=4>|x1-x2|,
∴h(x)=x2-x不是R上的“平缓函数”.
(2)证明 由(1)得g(x)=sin x是R上的“平缓函数”.
则|sin xn+1-sin xn|≤|xn+1-xn|,
∴|yn+1-yn|≤|xn+1-xn|.
而|xn+1-xn|≤,
∴|yn+1-yn|≤<=.
∵|yn+1-y1|=|(yn+1-yn)+(yn-yn-1)+(yn-1-yn-2)+…+(y2-y1)|,
∴|yn+1-y1|≤|yn+1-yn|+|yn-yn-1|+|yn-1-yn-2|+…+|y2-y1|.
∴|yn+1-y1|≤
=<.