题目内容
设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围是 ( ).
A. B.[-1,0] C.(-∞,-2] D.
A
【解析】f(x)=x2-3x+4为开口向上的抛物线,g(x)=2x+m是斜率k=2的直线,可先求出g(x)=2x+m与f(x)=x2-3x+4相切时的m值.由f′(x)=2x-3=2得切点为,此时m=-,因此f(x)=x2-3x+4的图象与g(x)=2x+m的图象有两个交点只需将g(x)=2x-向上平移即可.再考虑区间[0,3],可得点(3,4)为f(x)=x2-3x+4图象上最右边的点,此时m=-2,所以m∈
练习册系列答案
相关题目