题目内容
【题目】若,
(Ⅰ)求证:;
(Ⅱ)求证:;
(Ⅲ)在(Ⅱ)中的不等式中,能否找到一个代数式,满足所求式?若能,请直接写出该代数式;若不能,请说明理由.
【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ)答案见解析.
【解析】分析:(Ⅰ)由题意结合绝对值不等式的性质即可证得题中的结论;
(Ⅱ)由不等式的性质可证得.则.
(Ⅲ)利用放缩法可给出结论:,或.
详解:(Ⅰ)因为,且,所以,所以
(Ⅱ)因为,所以.又因为,所以由同向不等式的相加性可将以上两式相加得.所以.
所以.(i)
因为,所以由同向不等式的相加性可将以上两式相加得.
所以(ii)
所以由两边都是正数的同向不等式的相乘性可将以上两不等式(i)(ii)相乘得.
(Ⅲ)因为,,
所以,或.(只要写出其中一个即可)
练习册系列答案
相关题目