题目内容
已知函数
(1)求的单调递增区间;
(2)在中,内角A,B,C的对边分别为,已知,成等差数列,且,求边的值.
(1)求的单调递增区间;
(2)在中,内角A,B,C的对边分别为,已知,成等差数列,且,求边的值.
(1);(2).
试题分析:(1)求三角函数的单调区间等问题,我们的目标很明确,就是要把函数化为的形式,然后根据正弦函数的性质得出结论,本题中首先把用两角差的正弦公式展开,再把降幂把角化为,即化为同角的问题,再利用两角和或差的正弦公式,转化为一个三角函数;(2)已知,由(1)的结论应该很容易求出角A,成等差数列得一个关系,可以转化为,从而,这是第二个关系,但其中有三个未知数,还需找一个关系式,,这里我们联想到余弦定理,正好找到第三个关系,从而联立方程组求出边.
试题解析:解:(1)
令
的单调递增区间为
(2)由,得
∵,∴,∴
由b,a,c成等差数列得2a=b+c
∵,∴,∴
由余弦定理,得
∴,∴
练习册系列答案
相关题目