题目内容
【题目】定义在R上的奇函数f(x),当x≥0时, f(x)= ,
则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为( )
A.1﹣2a
B.2a﹣1
C.1﹣2﹣a
D.2﹣a﹣1
【答案】A
【解析】解:∵当x≥0时,
f(x)= ;
即x∈[0,1)时,f(x)= (x+1)∈(﹣1,0];
x∈[1,3]时,f(x)=x﹣2∈[﹣1,1];
x∈(3,+∞)时,f(x)=4﹣x∈(﹣∞,﹣1);
画出x≥0时f(x)的图象,
再利用奇函数的对称性,画出x<0时f(x)的图象,如图所示;
则直线y=a,与y=f(x)的图象有5个交点,则方程f(x)﹣a=0共有五个实根,
最左边两根之和为﹣6,最右边两根之和为6,
∵x∈(﹣1,0)时,﹣x∈(0,1),
∴f(﹣x)= (﹣x+1),
又f(﹣x)=﹣f(x),
∴f(x)=﹣ (﹣x+1)= (1﹣x)﹣1=log2(1﹣x),
∴中间的一个根满足log2(1﹣x)=a,即1﹣x=2a,
解得x=1﹣2a,
∴所有根的和为1﹣2a.
故选:A.
【考点精析】利用函数的零点对题目进行判断即可得到答案,需要熟知函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.
【题目】如表是某校120名学生假期阅读时间(单位:小时)的频率分布表,现用分层抽样的方法从[10,15),[15,20),[20,25),[25,30)四组中抽取20名学生了解其阅读内容,那么从这四组中依次抽取的人数是( )
分组 | 频数 | 频率 |
[10,15) | 12 | 0,10 |
[15,20) | 30 | a |
[20,25) | m | 0.40 |
[25,30) | n | 0.25 |
合计 | 120 | 1.00 |
A.2,5,8,5
B.2,5,9,4
C.4,10,4,2
D.4,10,3,3