题目内容
【题目】设函数,其中.
(Ⅰ)当为偶函数时,求函数的极值;
(Ⅱ)若函数在区间上有两个零点,求的取值范围.
【答案】(Ⅰ)极小值,极大值;(Ⅱ)或
【解析】
(Ⅰ)根据偶函数定义列方程,解得.再求导数,根据导函数零点列表分析导函数符号变化规律,即得极值,(Ⅱ)先分离变量,转化研究函数,,利用导数研究单调性与图象,最后根据图象确定满足条件的的取值范围.
(Ⅰ)由函数是偶函数,得,
即对于任意实数都成立,
所以.
此时,则.
由,解得.
当x变化时,与的变化情况如下表所示:
0 | 0 | ||||
↘ | 极小值 | ↗ | 极大值 | ↘ |
所以在,上单调递减,在上单调递增.
所以有极小值,有极大值.
(Ⅱ)由,得. 所以“在区间上有两个零点”等价于“直线与曲线,有且只有两个公共点”.
对函数求导,得.
由,解得,.
当x变化时,与的变化情况如下表所示:
0 | 0 | ||||
↘ | 极小值 | ↗ | 极大值 | ↘ |
所以在,上单调递减,在上单调递增.
又因为,,,,
所以当或时,直线与曲线,有且只有两个公共点.
即当或时,函数在区间上有两个零点.
练习册系列答案
相关题目