题目内容
【题目】已知命题p:y=x+m﹣2的图象不经过第二象限,命题q:方程x2+ =1表示焦点在x轴上的椭圆. (Ⅰ)试判断p是q的什么条件;
(Ⅱ)若p∧q为假命题,p∨q为真命题,求实数m的取值范围.
【答案】解:由p可得:m﹣2≤0,即m≤2, 由q可得0<1﹣m<1,即0<m<1,
(Ⅰ)∵p推不出q,且qp,
∴p是q的必要不充分条件;
(Ⅱ)∵p∧q为假命题,p∨q为真命题,
∴p,q一真一假,
p真q假时: 或m≥1,
∴m≤0或1≤m≤2,
p假q真时: ,无解,
综上,m≤0或1≤m≤2
【解析】(Ⅰ)分别求出p,q为真时的m的范围,根据充分必要条件的定义判断即可;(Ⅱ)根据p,q一真一假得到关于m的不等式,解出即可.
【考点精析】本题主要考查了复合命题的真假的相关知识点,需要掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真才能正确解答此题.
练习册系列答案
相关题目