题目内容
【题目】设0<b<1+a,若关于x的不等式(x﹣b)2>(ax)2的解集中的整数解恰有3个,则( )
A.﹣1<a<0
B.0<a<1
C.1<a<3
D.3<a<6
【答案】C
【解析】解:关于x 的不等式(x﹣b)2>(ax)2 即 (a2﹣1)x2+2bx﹣b2<0,∵0<b<1+a, [(a+1)x﹣b][(a﹣1)x+b]<0 的解集中的整数恰有3个,∴a>1,
∴不等式的解集为 <x< <1,所以解集里的整数是﹣2,﹣1,0 三个.
∴﹣3≤﹣ <﹣2,
∴2< ≤3,2a﹣2<b≤3a﹣3,
∵b<1+a,
∴2a﹣2<1+a,
∴a<3,
综上,1<a<3,
故选:C.
【考点精析】掌握解一元二次不等式是解答本题的根本,需要知道求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边.
【题目】已知函数f(x)=x3+bx2+ax+d的图象过点P(0,2),且在点M(﹣1,f(﹣1))处的切线程为6x﹣y+7=0.
(1)求函数y=f(x)的解析式;
(2)求函数y=f(x)的单调区间.
【题目】[2019·龙泉驿区一中]交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,且保费与上一年车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和费率浮动比率表 | ||
浮动因素 | 浮动比率 | |
上一个年度未发生有责任道路交通事故 | 下浮 | |
上两个年度未发生有责任道路交通事故 | 下浮 | |
上三个以及以上年度未发生有责任道路交通事故 | 下浮 | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | ||
上一个年度发生两次及两次以上有责任道路交通事故 | 上浮 | |
上一个年度发生有责任道路交通死亡事故 | 上浮 |
某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了70辆车龄已满三年该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 13 | 7 | 20 | 14 | 6 |
(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损6000元,一辆非事故车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:
①若该销售商店内有7辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选2辆,求这2辆车恰好有一辆为事故车的概率;
②若该销售商一次性购进70辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值(结果用分数表示).