题目内容
【题目】已知数列{an}满足a1=,an+1=3an-1(n∈N*).
(1)若数列{bn}满足bn=an-,求证:{bn}是等比数列;
(2)求数列{an}的前n项和Sn.
【答案】(1)见解析;(2)。
【解析】【试题分析】(1)先依据题设得到an+1=3(n∈N*),从而有bn+1=3bn,b1=a1-=1,然后运用等比数列的定义分析推证;(2)先借助(1)的结论及题设条件求出Sn=30++3++…+3n-1+,然后运用等比数列的前n项和求解.
解:(1) 由题可知an+1=3(n∈N*),从而有bn+1=3bn,b1=a1-=1,
所以{bn}是以1为首项,3为公比的等比数列.
(2) 由第1问知bn=3n-1,从而an=3n-1+,
有Sn=30++3++…+3n-1+=30+31+32+…+3n-1+×n=.
练习册系列答案
相关题目
【题目】某淘宝店经过对春节七天假期的消费者进行统计,发现在金额不超过1000元的消费者中男女比例为,该店按此比例抽取了100名消费者进行进一步分析,得到下表女性消费情况:
消费金额(元) | |||||
人数 | 5 | 10 | 15 | 47 | 3 |
男性消费情况:
消费金额(元) | |||||
人数 | 2 | 3 | 10 | 3 | 2 |
若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”
(1)分别计算女性和男性消费的平均数,并判断平均消费水平高的一方“网购达人”出手是否更阔绰?
(2)根据以上统计数据填写如下列联表,并回答能否在犯错误的概率不超过的前提下认为“是否为‘网购达人’与性别有关”.
女性 | 男性 | 合计 | |
“网购达人” | |||
“非网购达人” | |||
合计 |
附: .