题目内容

已知三点A(cosα,sinα),B(cosβ,sinβ),C(cosγ,sinγ),若向量
OA
+K
OB
+(2-K)
OC
=
0
(k为常数且0<k<2,O为坐标原点,S△BOC表示△BOC的面积)
(1)求cos(β-γ)的最值及相应的k的值;
(2)求cos(β-γ)取得最大值时,S△BOC:S△AOC:S△AOB
分析:(1)将已知中的向量关系变形为等式的一边有一个向量,将等式平方求出cos(β-γ)的函数式,分离常数,利用二次函数的最值求出范围
(2)将k值代入向量等式求出三个向量的夹角,又三个向量的模相等,得到三个三角形全等,得到三角形的面积比.
解答:解:(1)由
OA
+K
OB
+(2-K)
OC
=
0
k
OB
+(2-k)
OC
=-
OA

两边平方,得k2+(2-k)2+2k(2-k)cos(β-γ)=1
整理得cos(β-γ)=
2k2-4k+3
2k2-4k
=1+
3
2(k2-2k)

当k∈(0,2)时,k2-2k∈[-1,0),
3
2(k2-2k)
∈(-∞,-
3
2
]
1+
3
2(k2-2k)
∈(-∞,-
1
2
]

又cos(β-γ)∈[-1,1],
cos(β-γ)∈[-1,-
1
2
]

当k=1时,cos(β-γ)取得最大值-
1
2

k=
1
2
或k=
3
2
时,cos(β-γ)取得最小值-1.

(2)由(1)得,cos(β-γ)取得最大值-
1
2
时,k=1
此时,
OA
+
OB
+
OC
=
0
OB
OC
的夹角为120°.
|
OA
|=|
OB
|=|
OC
|
(
OA
+
OB
)2=
OA
2
+
OB
2
+2
OA
OB
=1?
OA
OB
=-
1
2

OA
OB
的夹角为120°.
故S△BOC:S△AOC:S△AOB=1:1:1.
点评:本题考查向量的运算法则、两角和的公式、分离常数求二次函数的值域、利用向量的数量积求出向量的夹角.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网