题目内容
【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:
每周移动支付次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合计 | 15 | 12 | 13 | 7 | 8 | 45 |
(1)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,由以上数据完成下列2×2列联表,并判断能否在犯错误的概率不超过0.005的前提下,认为“移动支付活跃用户”与性别有关?
移动支付活跃用户 | 非移动支付活跃用户 | 总计 | |
男 | |||
女 | |||
总计 | 100 |
(2)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,视频率为概率,在我市所有“移动支付达人”中,随机抽取4名用户.为了鼓励男性用户使用移动支付,对抽出的男“移动支付达人”每人奖励300元,记奖励总金额为,求的分布列及数学期望.
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)能;(2)400元.
【解析】分析:(1)先根据已知的数据完成2×2列联表,再计算判断在犯错误概率不超过0.005前提下,能认为“移动支付活跃用户”与性别有关.(2)利用二项分布求的分布列及数学期望.
详解:(1)由表格数据可得2×2列联表如下:
非移动支付活跃用户 | 移动支付活跃用户 | 合计 | |
男 | 25 | 20 | 45 |
女 | 15 | 40 | 55 |
合计 | 40 | 60 | 100 |
将列联表中的数据代入公式计算得:
所以在犯错误概率不超过0.005前提下,能认为“移动支付活跃用户”与性别有关.
(2)视频率为概率,在我市“移动支付达人”中,随机抽取1名用户,
该用户为男“移动支付达人”的概率为,女“移动支付达人”的概率为,记抽出的男“移动支付达人”人数为,则,由题意得,
∴,
;
,
所以的分布列为
0 | 1 | 2 | 3 | 4 | |
所以的分布列为
0 | 300 | 600 | 900 | 1200 | |
由,得的数学期望元
(或元)
【题目】某校在本校任选了一个班级,对全班50名学生进行了作业量的调查,根据调查结果统计后,得到如下的列联表,已知在这50人中随机抽取1人,认为作业量大的概率为.
认为作业量大 | 认为作业量不大 | 合计 | |
男生 | 18 | ||
女生 | 17 | ||
合计 | 50 |
(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,能否有的把握认为“认为作业量大”与“性别”有关?
附表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | span>5.024 | 6.635 | 10.828 |
附: