题目内容
【题目】设λ是正实数,(1+λx)20的二项展开式为a0+a1x+a2x2+…+a20x20,其中a0,a1,…,a20 ,…,均为常数
(1)若a3=12a2,求λ的值;
(2)若a5≥an对一切n∈{0,1,…,20}均成立,求λ的取值范围.
【答案】(1)λ=2 (2)
【解析】
(1)根据通项公式可得Cλ3=12Cλ2,解得λ=2即可;
(2)假设第r+1项系数最大,根据题意列式,化简得,再根据a5≥an对一切n∈{0,1,…,20}均成立,得到,解不等式组即可得到答案.
(1)通项公式为Tr+1=,r=0,1,2,…,20,
∴由a3=12a2得,Cλ3=12Cλ2,解得λ=2.
(2)假设第r+1项系数最大,因为λ是正实数,依题意得,
解得,变形得,
因为a5≥an对一切n∈{0,1,…,20}均成立,
∴∴,解得.
【题目】某地因受天气,春季禁渔等因素影响,政府规定每年的7月1日以后的100天为当年的捕鱼期.某渔业捕捞队对吨位为的20艘捕鱼船一天的捕鱼量进行了统计,如下表所示:
捕鱼量(单位:吨) | |||||
频数 | 2 | 7 | 7 | 3 | 1 |
根据气象局统计近20年此地每年100天的捕鱼期内的晴好天气情况如下表(捕鱼期内的每个晴好天气渔船方可捕鱼,非晴好天气不捕鱼):
晴好天气(单位:天) | |||||
频数 | 2 | 7 | 6 | 3 | 2 |
(同组数据以这组数据的中间值作代表)
(Ⅰ)估计渔业捕捞队吨位为的渔船单次出海的捕鱼量的平均数;
(Ⅱ)已知当地鱼价为2万元/吨,此种捕鱼船在捕鱼期内捕鱼时,每天成本为10万元/艘,若不捕鱼,每天成本为2万元/艘,若以(Ⅰ)中确定的作为上述吨位的捕鱼船在晴好天气捕鱼时一天的捕鱼量.
①请依据往年天气统计数据,试估计一艘此种捕鱼船年利润不少于1600万元的概率;
②设今后3年中,此种捕鱼船每年捕鱼情况一样,记一艘此种捕鱼船年利润不少于1600万元的年数为,求的分布列和期望.