题目内容

已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x都有f(x)≥0,则
f(1)
f′(0)
的最小值为(  )
A、3
B、
5
2
C、2
D、
3
2
分析:先求导,由f′(0)>0可得b>0,因为对于任意实数x都有f(x)≥0,所以结合二次函数的图象可得a>0且b2-4ac≤0,又因为
f(1)
f′(0)
=
a+b+c
b
=
a+c
b
+1
,利用均值不等式即可求解.
解答:解:∵f'(x)=2ax+b,
∴f'(0)=b>0;
∵对于任意实数x都有f(x)≥0,
∴a>0且b2-4ac≤0,
∴b2≤4ac,
∴c>0;
f(1)
f′(0)
=
a+b+c
b
=
a+c
b
+1≥
2
ac
b
+1≥1+1=2

当a=c时取等号.
故选C.
点评:本题考查了求导公式,二次函数恒成立问题以及均值不等式,综合性较强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网