题目内容
【题目】已知抛物线经过点, 在点处的切线交轴于点,直线经过点且垂直于轴.
(1)求线段的长;
(2)设不经过点和的动直线交于点和,交于点,若直线、、的斜率依次成等差数列,试问: 是否过定点?请说明理由.
【答案】(1);(2)的方程为,即恒过定点.
【解析】试题分析:(Ⅰ)运用切线与曲线的关系建立方程求解;(Ⅱ)借助题设条件建立方程分析求解即可.
试题解析:
(Ⅰ)由抛物线经过点,得
,故, 的方程为
在第一象限的图象对应的函数解析式为,则
故在点处的切线斜率为,切线的方程为
令得,所以点的坐标为
故线段的长为
(Ⅱ)恒过定点,理由如下:
由题意可知的方程为,因为与相交,故
由,令,得,故
设
由消去得:
则,
直线的斜率为,同理直线的斜率为
直线的斜率为
因为直线、、的斜率依次成等差数列,所以
即
整理得: ,
因为不经过点,所以
所以,即
故的方程为,即恒过定点
【题目】继共享单车之后,又一种新型的出行方式------“共享汽车”也开始亮相北上广深等十余大中城市,一款叫“一度用车”的共享汽车在广州提供的车型是“奇瑞eQ”,每次租车收费按行驶里程加用车时间,标准是“1元/公里+0.1元/分钟”,李先生家离上班地点10公里,每天租用共享汽车上下班,由于堵车因素,每次路上开车花费的时间是一个随机变量,根据一段时间统计40次路上开车花费时间在各时间段内的情况如下:
时间(分钟) | |||||
次数 | 8 | 14 | 8 | 8 | 2 |
以各时间段发生的频率视为概率,假设每次路上开车花费的时间视为用车时间,范围为分钟.
(Ⅰ)若李先生上.下班时租用一次共享汽车路上开车不超过45分钟,便是所有可选择的交通工具中的一次最优选择,设是4次使用共享汽车中最优选择的次数,求的分布列和期望.
(Ⅱ)若李先生每天上下班使用共享汽车2次,一个月(以20天计算)平均用车费用大约是多少(同一时段,用该区间的中点值作代表).