题目内容
已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=
.
(1)求a、b的值及函数f(x)的解析式;
(2)若不等式f(2x)-k·2x≥0在x∈[-1,1]时有解,求实数k的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040749956450.png)
(1)求a、b的值及函数f(x)的解析式;
(2)若不等式f(2x)-k·2x≥0在x∈[-1,1]时有解,求实数k的取值范围.
(1)a=1,b=0,g(x)=x2-2x+1,f(x)=x+
-2.(2)(-∞,1]
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040749972314.png)
(1)g(x)=ax2-2ax+1+b,由题意得
①
得![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040750003661.png)
②
得
(舍).
∴a=1,b=0,g(x)=x2-2x+1,f(x)=x+
-2.
(2)不等式f(2x)-k·2x≥0,即2x+
-2≥k·2x,
∴k≤
-2·
+1.
设t=
,则k≤t2-2t+1,∵x∈[-1,1],故t∈
.
记h(t)=t2-2t+1,∵t∈
,∴h(t)max=1,
故所求k的取值范围是(-∞,1]
①
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240407499881390.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040750003661.png)
②
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240407500191378.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040750034745.png)
∴a=1,b=0,g(x)=x2-2x+1,f(x)=x+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040749972314.png)
(2)不等式f(2x)-k·2x≥0,即2x+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040750066407.png)
∴k≤
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040750081678.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040750097627.png)
设t=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040750066407.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040750128513.png)
记h(t)=t2-2t+1,∵t∈
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040750128513.png)
故所求k的取值范围是(-∞,1]
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目