题目内容

【题目】已知集合A={x|x2﹣2x﹣8=0},B={x|x2+ax+a2﹣12=0},且有A∪B=A,求实数a的取值集.

【答案】解:集合A={x|x2﹣2x﹣8=0}={﹣2,4},B={x|x2+ax+a2﹣12=0},
若A∪B=A,则BA,可分为以下几种情况,
1)B=A,即方程x2+ax+a2﹣12=0的解为x=﹣2或x=4,解得a=﹣2;
2)B={﹣2},即方程x2+ax+a2﹣12=0的解为x=﹣2,(﹣2)2﹣2a+a2﹣12=0,解得:a=﹣2(舍)或a=4;
3)B={4},即方程x2+ax+a2﹣12=0的解为x=4,a2+4a+4=0,解得a=﹣2,此时B={﹣2,4}≠{4},故需舍弃;
4)B为空集,即方程x2+ax+a2﹣12=0无解,a2﹣4(a2﹣12)<0,解得a>4或a<﹣4.
综上可知,若B∪A=A,a=﹣2或a≥4,或a<﹣4
【解析】化简集合A,若A∪B=A,则BA,分类讨论,即可求实数a的取值集合.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网