题目内容
20.已知A(1,0,0),B(0,2,0),C(0,0,3),则原点O到面ABC的距离为$\frac{6}{7}$.分析 由已知得$\overrightarrow{AB}$=(-1,2,0),$\overrightarrow{AC}$=(-1,0,3),$\overrightarrow{OA}$=(1,0,0),求出平面ABC的法向量,利用向量法能求出原点O到平面ABC的距离.
解答 解:∵A(1,0,0),B(0,2,0),C(0,0,3),
∴$\overrightarrow{AB}$=(-1,2,0),$\overrightarrow{AC}$=(-1,0,3),$\overrightarrow{OA}$=(1,0,0),
设平面ABC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{-x+2y=0}\\{-x+3z=0}\end{array}\right.$,
取x=6,得$\overrightarrow{n}$=(6,3,2),
∴原点O到平面ABC的距离d=$\frac{|\overrightarrow{OA}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{6}{\sqrt{36+9+4}}$=$\frac{6}{7}$.
故答案为:$\frac{6}{7}$.
点评 本题考查点到平面的距离的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关题目
15.若函数f(x)=x3+ax2+bx+a2在x=1时有极值10,则实数a,b的值是( )
A. | $\left\{{\begin{array}{l}{a=-3}\\{b=3}\end{array}}\right.$ | B. | $\left\{{\begin{array}{l}{a=4}\\{b=-11}\end{array}}\right.$ | ||
C. | $\left\{{\begin{array}{l}{a=-3}\\{b=3}\end{array}}\right.$或$\left\{{\begin{array}{l}{a=4}\\{b=-11}\end{array}}\right.$ | D. | $\left\{{\begin{array}{l}{a=-3}\\{b=-11}\end{array}}\right.$或$\left\{{\begin{array}{l}{a=4}\\{b=3}\end{array}}\right.$ |