题目内容
如图所示,直棱柱中,底面是直角梯形,,.(1)求证:平面;(2)在A1B1上是否存一点,使得与平面平行?证明你的结论.
(1)证明略 (2)略
解析
(本小题满分14分)如图,已知几何体的三视图(单位:cm).(1)在这个几何体的直观图相应的位置标出字母;(2分)(2)求这个几何体的表面积及体积;(6分)(3)设异面直线、所成角为,求.(6分)
(本题满分13分)在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E的棱AB上移动。(I)证明:D1EA1D;(II)AE等于何值时,二面角D1-EC-D的大小为。
(本小题满分13分)如图(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分别为AC ,AD ,DE的中点,现将△ACD沿CD折起,使平面ACD平面CBED,如图(乙).(1)求证:平面FHG//平面ABE;(2)记表示三棱锥B-ACE 的体积,求的最大值;(3)当取得最大值时,求二面角D-AB-C的余弦值.
(14分)如图①,直角梯形中,,点分别在上,且,现将梯形A沿折起,使平面与平面垂直(如图②).(1)求证:平面;(2)当时,求二面角的大小.
(本题满分10分) 如图,用一付直角三角板拼成一直二面角A—BD—C,若其中给定 AB="AD" =2,,, (Ⅰ)求三棱锥A-BCD的体积;(Ⅱ)求点A到BC的距离.
已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是 AB、PC的中点.(1) 求证:EF∥平面PAD;(2) 求证:EF⊥CD;(3) 若∠PDA=45°,求EF与平面ABCD所成的角的大小.
(本题满分15分)如图,在四棱锥中,底面是矩形,平面,与平面所成角的正切值依次是和,,依次是的中点.(Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值.
(本小题满分14分)如图,在直三棱柱ABC-A1B1C1中,点D、E分别在边BC、B1C1上,CD=B1E=AC,ÐACD=60°.求证:(1)BE∥平面AC1D;(2)平面ADC1⊥平面BCC1B1.