题目内容
(本小题满分13分)某电视生产企业有A、B两种型号的电视机参加家电下乡活动,若
企业投放A、B两种型号电视机的价值分别为a、b万元,则农民购买电视机获得的补贴分
别为万元(m > 0且为常数).已知该企业投放总价值为10万元的A、B
两种型号的电视机,且A、B两种型号的投放金额都不低于1万元.
(Ⅰ)请你选择自变量,将这次活动中农民得到的总补贴表示为它的函数,并求其定义域;
(Ⅱ)求当投放B型电视机的金额为多少万元时,农民得到的总补贴最大?
【答案】
解:(I)设投放B型电视机的金额的x万元,则投放A型电视机的金额为(10 – x )万元,农
民得到的总补贴 4分(没有指明x范围的扣1
分)
(II),令y′= 0 得 x=10m –1 6分
1°若 10m – 1 ≤ 1 即 0 < m ≤ 时 ,则f(x)在为减函数,当x = 1时,f(x)有
最大值;
2°若 1 < 10m – 1 < 9 即 时,则f(x)在是增函数,在
是减函数,当x = 10m–1时,f(x)有最大值;
3°若10m–1≥9 即m≥1时,则f (x)在是增函数,当x = 9时,f(x)有最大值. 10分
因此,当0<m≤时,投放B型电视机1万元;当时,投放B型电视机(10m–1)
万元,当m≥1时,投放B型电视机9万元.农民得到的总补贴最大。13分
【解析】略
练习册系列答案
相关题目