题目内容
已知正项等比数列{an}中,a2·a5·a13·a16=256,a7=2,则数列{an}的公比为( )A.
B.2 C.±2 D.±![]()
A
解析:由题意a94=256,又an>0,∴a9=4.而a7=2,∴q2=2.
又由{an}为正项等比数列,∴q>0,q=
.
练习册系列答案
相关题目
已知正项等比数列{an}中,a1=1,a3a7=4a62,则S6=( )
A、
| ||
B、
| ||
C、
| ||
| D、2 |
已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am,an使得
=4a1,则
+
的最小值为( )
| aman |
| 1 |
| m |
| 1 |
| n |
A、
| ||
B、
| ||
C、
| ||
| D、不存在 |
已知正项等比数列{an}的前n项和为Sn,若S3=3,S9-S6=12,则S6=( )
| A、9 | ||
B、
| ||
| C、18 | ||
| D、39 |