题目内容
【题目】已知函数(a,).
(1)若,且在内有且只有一个零点,求a的值;
(2)若,且有三个不同零点,问是否存在实数a使得这三个零点成等差数列?若存在,求出a的值,若不存在,请说明理由;
(3)若,,试讨论是否存在,使得.
【答案】(1)(2)存在;a的值为(3)答案不唯一,具体见解析
【解析】
(1),,讨论和两种情况,分别计算函数的单调性,再根据零点个数得到参数.
(2),根据题意,计算得到,,计算得到答案.
(3),,故必须在上有解,解方程得到答案.
(1)若,则,,
若,则在,则,则在上单调递增,
又,故在上无零点,舍;
若,令,得,,,
在上,,在上单调递减,
在上,,在上单调递增,
故,
若,则,在上无零点,舍;
若,则,在上恰有一零点,此时;
若,则,,,
则在和上有各有一个零点,舍;
故a的值为.
(2)因为,则,若有三个不同零点,且成等差数列,可设,
故,则,故,,.
此时,,,故存在三个不同的零点.
故符合题意的a的值为.
(3)若,,,
∴若存在,使得,
必须在上有解.
,
方程的两根为:,,
只能是,
依题意,即,
即,
又由,得,故欲使满足题意的存在,则,
∴当时,存在唯一的满足,
当时,不存在使.
练习册系列答案
相关题目