题目内容
3.在△ABC中,角A,B,C所对的边分别是a,b,c,若a2+b2-c2=$\sqrt{3}$ab,则角C等于( )A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |
分析 由已知及余弦定理可得cosC=$\frac{\sqrt{3}}{2}$,由C为三角形内角C∈(0,π),即可解得C的值.
解答 解:∵a2+b2-c2=$\sqrt{3}$ab,
∴由余弦定理可得:cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{\sqrt{3}ab}{2ab}$=$\frac{\sqrt{3}}{2}$,
∵C∈(0,π),
∴可得:C=$\frac{π}{6}$.
故选:A.
点评 本题主要考查了余弦定理,特殊角的三角函数值,余弦函数的图象和性质的应用,属于基础题.
练习册系列答案
相关题目
7.甲、乙两厂污水的排放量W与时间t的关系如图所示,治污效果较好的是( )
A. | 甲 | B. | 乙 | C. | 相同 | D. | 不确定 |
8.已知a>0,h(x)=ax2+2ax,g(x)=ex,若在(0,+∞)上至少存在一点x0,使h(x0)>g(x0)成立,则实数a的取值范围为( )
A. | ($\frac{\sqrt{2}-1}{2}$e${\;}^{\sqrt{2}}$,+∞) | B. | ($\frac{\sqrt{2}+1}{2}$e${\;}^{\sqrt{2}}$+∞) | C. | (-∞,$\frac{\sqrt{2}-1}{2}$e${\;}^{\sqrt{2}}$) | D. | (-∞,$\frac{\sqrt{2}+1}{2}$e${\;}^{\sqrt{2}}$) |
13.已知点P是圆(x-1)2+y2=8上的动点,且点P不在x轴上,F1、F2为圆与x轴的两个交点,若M是∠F1PF2的角平分线上一点,且$\overrightarrow{{F}_{1}M}$$•\overrightarrow{MP}$=0,又F1M的延长线与直线PF2交于点Q,N为PQ的中点,则|$\overrightarrow{MN}$|的取值范围是( )
A. | (0,2$\sqrt{2}$) | B. | (0,4$\sqrt{2}$) | C. | (0,4) | D. | (2$\sqrt{2}$,4$\sqrt{2}$) |