题目内容
已知函数f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,若对于任意的m、n∈[-1,1]有
>0.
(1)判断并证明函数的单调性;
(2)解不等式f(x+
)<f(1-x);
(3)若f(x)≤-2at+2对于任意的x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.
f(m)+f(n) |
m+n |
(1)判断并证明函数的单调性;
(2)解不等式f(x+
1 |
2 |
(3)若f(x)≤-2at+2对于任意的x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.
分析:(1)设x1=m,x2=-n,由已知可得
>0,分x1>x2,及x1<x2两种情况可知f(x1)与f(x2)的大小,借助单调性的定义可得结论;
(2)利用函数单调性可得去掉不等式中的符号“f”,转化为具体不等式,再考虑到函数定义域可得不等式组,解出即可;
(3)要使得对于任意的x∈[-1,1],a∈[-1,1]都有f(x)≤-2at+2恒成立,只需对任意的a∈[-1,1]时-2at+2≥f(x)max,整理后化为关于a的一次函数可得不等式组;
f(x1)-f(x2) |
x1-x2 |
(2)利用函数单调性可得去掉不等式中的符号“f”,转化为具体不等式,再考虑到函数定义域可得不等式组,解出即可;
(3)要使得对于任意的x∈[-1,1],a∈[-1,1]都有f(x)≤-2at+2恒成立,只需对任意的a∈[-1,1]时-2at+2≥f(x)max,整理后化为关于a的一次函数可得不等式组;
解答:(1)函数f(x)在区间[-1,1]上是增函数:
证明:由题意可知,对于任意的m、n∈[-1,1]有
>0,
可设x1=m,x2=-n,则
>0,即
>0,
当x1>x2时,f(x1)>f(x2),
∴函数f(x)在区间[-1,1]上是增函数;
当x1<x2时,f(x1)<f(x2),
∴函数f(x)在区间[-1,1]上是增函数;
综上:函数f(x)在区间[-1,1]上是增函数.
(2)由(1)知函数f(x)在区间[-1,1]上是增函数,
又由f(x+
)<f(1-x),
得
,解得0≤x<
,
∴不等式f(x+
)<f(1-x)的解集为{x|0≤x<
};
(3)∵函数f(x)在区间[-1,1]上是增函数,且f(1)=1,
要使得对于任意的x∈[-1,1],a∈[-1,1]都有f(x)≤-2at+2恒成立,
只需对任意的a∈[-1,1]时-2at+2≥1,即-2at+1≥0恒成立,
令y=-2at+1,此时y可以看做a的一次函数,且在a∈[-1,1]时y≥0恒成立,
因此只需要
,解得-
≤t≤
,
∴实数t的取值范围为:-
≤t≤
.
证明:由题意可知,对于任意的m、n∈[-1,1]有
f(m)+f(n) |
m+n |
可设x1=m,x2=-n,则
f(x1)+f(-x2) |
x1-x2 |
f(x1)-f(x2) |
x1-x2 |
当x1>x2时,f(x1)>f(x2),
∴函数f(x)在区间[-1,1]上是增函数;
当x1<x2时,f(x1)<f(x2),
∴函数f(x)在区间[-1,1]上是增函数;
综上:函数f(x)在区间[-1,1]上是增函数.
(2)由(1)知函数f(x)在区间[-1,1]上是增函数,
又由f(x+
1 |
2 |
得
|
1 |
4 |
∴不等式f(x+
1 |
2 |
1 |
4 |
(3)∵函数f(x)在区间[-1,1]上是增函数,且f(1)=1,
要使得对于任意的x∈[-1,1],a∈[-1,1]都有f(x)≤-2at+2恒成立,
只需对任意的a∈[-1,1]时-2at+2≥1,即-2at+1≥0恒成立,
令y=-2at+1,此时y可以看做a的一次函数,且在a∈[-1,1]时y≥0恒成立,
因此只需要
|
1 |
2 |
1 |
2 |
∴实数t的取值范围为:-
1 |
2 |
1 |
2 |
点评:本题考查函数的单调性、奇偶性及其综合应用,考查抽象不等式的求解及恒成立问题,考查转化思想,考查学生解决问题的能力,利用函数性质去掉符号“f”是解决抽象不等式的关键.
练习册系列答案
相关题目