题目内容
已知函数f(x)=log3
,M(x1,y1),N(x2,y2)是f(x)图象上的两点,且x1+x2=1.
(1)求证:y1+y2为定值;
(2)若Sn=f(
)+f(
)+…+f(
)(n∈N*,N≥2),求Sn;
(3)在(2)的条件下,若an=
(n∈N*),Tn为数列{an}的前n项和.求Tn.
| ||
1-x |
(1)求证:y1+y2为定值;
(2)若Sn=f(
1 |
n |
2 |
n |
n-1 |
n |
(3)在(2)的条件下,若an=
|
分析:(1)先根据函数的表达式求y1+y2=log3
+lo3
=lo3
,再结合x1+x2=1即可得出答案;
(2)由(1)知当x1+x2=1时,y1+y2=f(x1)+f(x2)=1,从而有Sn=f(
)+f(
)+…+f(
)①再将此式倒序又得一式:Sn=f(
)+…+f(
)+f(
)两式相加即可;
(3)当n≥2时,an=
-
,从而利用裂项求和法即可得出Tn结果.
| ||
1-x1 |
| ||
1-x2 |
3x1x2 |
1-(x1+x2)+x1x2 |
(2)由(1)知当x1+x2=1时,y1+y2=f(x1)+f(x2)=1,从而有Sn=f(
1 |
n |
2 |
n |
n-1 |
n |
n-1 |
n |
2 |
n |
1 |
n |
(3)当n≥2时,an=
1 |
n+1 |
1 |
n+2 |
解答:解:(1)证明:由x1+x2=1,
y1+y2=log3
+lo3
=lo3
=1,
(2)由(1)知当x1+x2=1时,y1+y2=f(x1)+f(x2)=1
Sn=f(
)+f(
)+…+f(
)①
Sn=f(
)+…+f(
)+f(
) ②
①+②得Sn=
(3)当n≥2时,
an=
=
-
又当n=1时,a1=
所以an=
-
故Tn=(
-
)+(
-
)+…+(
-
)=
.
y1+y2=log3
| ||
1-x1 |
| ||
1-x2 |
3x1x2 |
1-(x1+x2)+x1x2 |
(2)由(1)知当x1+x2=1时,y1+y2=f(x1)+f(x2)=1
Sn=f(
1 |
n |
2 |
n |
n-1 |
n |
Sn=f(
n-1 |
n |
2 |
n |
1 |
n |
①+②得Sn=
n-1 |
2 |
(3)当n≥2时,
an=
1 | ||||
4×
|
1 |
n+1 |
1 |
n+2 |
又当n=1时,a1=
1 |
6 |
1 |
n+1 |
1 |
n+2 |
故Tn=(
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n+1 |
1 |
n+2 |
n |
2(n+2) |
点评:本题主要考查数列与函数的综合,以及综合运用上述知识分析问题和解决问题的能力.
练习册系列答案
相关题目