题目内容

【题目】已知函数f(x)=2 sinxcosx﹣3sin2x﹣cos2x+3.
(1)当x∈[0, ]时,求f(x)的值域;
(2)若△ABC的内角A,B,C的对边分别为a,b,c,且满足 = =2+2cos(A+C),求f(B)的值.

【答案】
(1)解:∵f(x)=2 sinxcosx﹣3sin2x﹣cos2x+3

= sin2x﹣3 +3

= sin2x+cos2x+1=2sin(2x+ )+1,

∵x∈[0, ],∴2x+ ∈[ ],

∴sin(2x+ )∈[ ,1],则2sin(2x+ )+1∈[0,3],

即函数f(x)=2sin(2x+ )+1的值域是[0,3]


(2)解:∵ =2+2cos(A+C),

∴sin(2A+C)=2sinA+2sinAcos(A+C),

sinAcos(A+C)+cosAsin(A+C)=2sinA+2sinAcos(A+C),

﹣sinAcos(A+C)+cosAsin(A+C)=2sinA,即sinC=2sinA,

由正弦定理可得c=2a,又由 = 可得b= a,

由余弦定理可得cosA= = =

又0°<A<180°,∴A=30°,

则sinC=2sinA=1,即C=90°,

∴B=180°﹣A﹣C=60°,

∴f(B)=f( )=2sin( + )+1=2


【解析】(1)由二倍角公式以及变形、两角和的正弦公式化简解析式,由x的范围求出2x+ 的范围,由正弦函数的性质求出f(x)的值域;(2)由两角和与差的正弦公式、正弦定理化简已知的式子,由条件和余弦定理求出cosA的值,由A的范围和特殊角的三角函数值求出A,由三角形的内角和定理求出B,代入可得f(B)的值.
【考点精析】本题主要考查了两角和与差的正弦公式和正弦定理的定义的相关知识点,需要掌握两角和与差的正弦公式:;正弦定理:才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网