题目内容
【题目】已知椭圆.双曲线的实轴顶点就是椭圆的焦点,双曲线的焦距等于椭圆的长轴长.
(1)求双曲线的标准方程;
(2)设直线经过点与椭圆交于两点,求的面积的最大值;
(3)设直线(其中为整数)与椭圆交于不同两点,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.
【答案】(1) (2) (3)存在,
【解析】
(1)根据椭圆方程可以得到双曲线的焦距和顶点坐标,从而直接写出双曲线方程即可;
(2)设出直线方程,将三角形面积拆分为2个三角形的面积,从而利用韦达定理进行处理;
(3)根据直线与两个曲线相交,通过夹逼出的取值范围,再结合向量相加为零转化出的条件,得到之间的关系,从而利用是整数,对结果进行取舍即可.
(1)对椭圆,因为,
故其焦点为,椭圆的长轴长为.
设双曲线方程为,
由题可知:,解得.
故双曲线的方程为:.
(2)因为直线AB的斜率显然不为零,
故设直线方程为,联立椭圆方程
可得
设交点,
则
则
又
故
令,解得
故
当且仅当时,即时,取得最大值.
故的面积的最大值为.
(3)联立直线与椭圆方程
可得
整理得 ①
设直线与椭圆的交点为
故可得 ②
同理:联立直线与双曲线方程
可得
整理得 ③
设直线与双曲线的交点为
故可得 ④
要使得
即可得
故可得
将②④代入可得
解得.
综上所述,要满足题意,只需使得:
故当时,可以取得满足题意;
即直线方程可以为
当时,可以取满足题意.
即直线方程可以为
故存在这样的直线有9条,能够使得.
【题目】为了响应国家号召,某校组织部分学生参与了“垃圾分类,从我做起”的知识问卷作答,并将学生的作答结果分为“合格”与“不合格”两类与“问卷的结果”有关?
不合格 | 合格 | |
男生 | 14 | 16 |
女生 | 10 | 20 |
(1)是否有90%以上的把握认为“性别”与“问卷的结果”有关?
(2)在成绩合格的学生中,利用性别进行分层抽样,共选取9人进行座谈,再从这9人中随机抽取5人发送奖品,记拿到奖品的男生人数为X,求X的分布列及数学期望.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.703 | 3.841 | 6.635 | 10.828 |