题目内容
已知函数f(x)=
若f(2-x2)>f(x),则实数x的取值范围是
- A.(-∞,-1)∪(2,+∞)
- B.(-∞,-2)∪(1,+∞)
- C.(-1,2)
- D.(-2,1)
D
分析:先通过基本函数得到函数的单调性,再利用单调性定义列出不等式,求出不等式的解集即可得到实数x的范围.
解答:易知f(x)在R上是增函数,
∵f(2-x2)>f(x)
∴2-x2>x,
解得-2<x<1.
则实数x的取值范围是(-2,1).
故选D.
点评:本题主要考查利用函数的单调性来解不等式,这类题既考查不等式的解法,也考查了函数的性质,这也是函数方程不等式的命题方向,应引起足够的重视.
分析:先通过基本函数得到函数的单调性,再利用单调性定义列出不等式,求出不等式的解集即可得到实数x的范围.
解答:易知f(x)在R上是增函数,
∵f(2-x2)>f(x)
∴2-x2>x,
解得-2<x<1.
则实数x的取值范围是(-2,1).
故选D.
点评:本题主要考查利用函数的单调性来解不等式,这类题既考查不等式的解法,也考查了函数的性质,这也是函数方程不等式的命题方向,应引起足够的重视.
练习册系列答案
相关题目
下列说法正确的是( )
| A、命题:“已知函数f(x),若f(x+1)与f(x-1)均为奇函数,则f(x)为奇函数,”为直命题 | B、“x>1”是“|x|>1”的必要不充分条件 | C、若“p且q”为假命题,则p,q均为假命题 | D、命题p:”?x∈R,使得x2+x+1<0”,则?p:”?x∈R,均有x2+x+1≥0” |