题目内容
7.已知函数f(x)=-$\frac{π}{2x}$,g(x)=xcosx-sinx,当x∈[-3π,3π]时,方程f(x)=g(x)根的个数是( )A. | 8 | B. | 6 | C. | 4 | D. | 2 |
分析 先对两个函数分析可知,函数f(x)与g(x)都是奇函数,且f(x)是反比例函数,g(x)在[0,π]上是减函数,在[π,2π]上是增函数,在[2π,3π]上是减函数,且g(0)=0,g(π)=-π;g(2π)=2π;g(3π)=-3π;从而作出函数的图象,由图象求方程的根的个数即可.
解答 解:由题意知,
函数f(x)=-$\frac{π}{2x}$在[-3π,3π]是奇函数且是反比例函数,
g(x)=xcosx-sinx在[-3π,3π]是奇函数;
g′(x)=cosx-xsinx-cosx=-xsinx;
故g(x)在[0,π]上是减函数,在[π,2π]上是增函数,在[2π,3π]上是减函数,
且g(0)=0,g(π)=-π;g(2π)=2π;g(3π)=-3π;
故作函数f(x)与g(x)在[-3π,3π]上的图象如下,
结合图象可知,有6个交点;
故选:B.
点评 本题考查了导数的综合应用及函数的图象的性质应用,同时考查了函数的零点与方程的根的关系应用,属于中档题.
练习册系列答案
相关题目
17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0),右焦点为F,过F作一条渐近线的垂线,垂足为M,O为坐标原点,若△OMF面积为$\frac{\sqrt{3}}{8}{c}^{2}$(其中c为半焦距),则该双曲线离心率可能为( )
A. | $\sqrt{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | 3 | D. | 2$\sqrt{3}$ |