题目内容
【题目】对下列命题:
①直线与函数的图象相交,则相邻两交点的距离为;
②点 是函数的图象的一个对称中心;
③函数在上单调递减,则的取值范围为;
④函数若对R恒成立,则.
其中所有正确命题的序号为____
【答案】①②③
【解析】
根据三角函数的图像与性质分别进行判断即可:①根据正切函数的周期为即可判断;②根据正切的中心对称点即可判断;③根据余弦函数的单点递减区间即可判断;④由正弦函数的最值以及的取值范围即可判断;
对于①,函数的周期为,故①正确;
对于②,函数,令,
解得,所以函数的中心对称点为,
当时,,故点是函数的一个对称中心,故②正确;
对于③,,周期,即,,
当时,,
即,
,解得,故③正确;
对于④,由题意可得,即,
解得,又因为,所以或,故④错误;
故答案为:①②③
【题目】某企业2018年招聘员工,其中,,,,五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:
岗位 | 男性 应聘人数 | 男性 录用人数 | 男性 录用比例 | 女性 应聘人数 | 女性 录用人数 | 女性 录用比例 |
269 | 167 | 40 | 24 | |||
40 | 12 | 202 | 62 | |||
177 | 57 | 184 | 59 | |||
44 | 26 | 38 | 22 | |||
3 | 2 | 3 | 2 | |||
总计 | 533 | 264 | 467 | 169 |
(1)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;
(2)从应聘岗位的6人中随机选择2人.记为这2人中被录用的人数,求的分布列和数学期望;
(3)表中,,,,各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)
【题目】共享单车已成为一种时髦的新型环保交通工具,某共享单车公司为了拓展市场,对两个品牌的共享单车在编号分别为的五个城市的用户人数(单位:十万)进行统计,得到数据如下:
城市 品牌 | 1 | 2 | 3 | 4 | 5 |
A品牌 | 3 | 4 | 12 | 6 | 8 |
B品牌 | 4 | 3 | 7 | 9 | 5 |
(Ⅰ)若共享单车用户人数超过50万的城市称为“优城”,否则称为“非优城”,据此判断能否有85%的把握认为“优城”和共享单车品牌有关?
(Ⅱ)若不考虑其它因素,为了拓展市场,对A品牌要从这五个城市选择三个城市进行宣传,
(ⅰ)求城市2被选中的概率;
(ⅱ)求在城市2被选中的条件下城市3也被选中的概率.